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ABSTRACT 

For a stationary ergodic process it is proved that the dependence coefficient 
associated with absolute regularity has a limit connected with a periodicity 
concept. Similar results can then be obtained for stronger dependence coeffi- 
cients. The periodicity concept is studied separately and it is seen that the 
double tail o'-field can be trivial while the period is 2. The paper imbeds renewal 
theory in ergodic theory. The total variation metric is used. 

I. Introduction 

We study some "total  variation" properties for a stationary sequence similar 

to 0-2 theorems for Markov chains. 

Random variables are measurable mappings on a normalized measure space, 

the probability space. They induce a measure on their range, called their 

distribution. Let  ~¢:= (~¢.).~z be a sequence of random variables (a process) with 

values in a common measurable space. Write Ts ¢ for the process with 

(T~) . :=  so.+,, n G Z. 

In most of our results below we may assume that ~5 is the coordinate process, i.e. 

the identity on sequence space, where T corresponds naturally to the shift 

transformation (see also the end of section 2). If Ts ¢ is distributed as ~: we say that 

is stationary. Denote  s~+:=(s¢.).~l and sc_:=(s¢,).~o. We say that tail 

(~+) := N ,  o'((T"~)+) is trivial if it contains only sets with probability 0 or 1. We 

investigate here a periodicity concept for processes. Furthermore we discuss an 

asymptotic independence condition for processes, called absolute regularity, first 

studied by Volkonskii and Rozanov [24] who attributed it to Komogorov,  and 

later introduced during the study of Bernoulli shifts under the name weak 
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Bernoulli by Friedman and Ornstein [9]. The latter name is often used for 

countably valued processes. It can be defined as follows. The total variation 
II v II = II v II~ of a signed measure v defined on a o'-field ~ is given by 

It v II = sup ]v(F)l +Iv(F ~)1. 
F E ~  

Note that if .~ is replaced by a sub (~-field of ~ then the total variation 

decreases. This causes the monotonicity in total variation expressions below. 

Let Px denote the distribution of a random variable (vector) X. If X and Y 

are random variables on the same probability space, define their dependence 

/3(x, Y):=½11Px.Y - Px × PYII. 

It vanishes if X and Y are independent.  Define as a measure of asymptotic 

independence of the past and the far future 

ft, : = 13 (~:_, (T"~)+), n_->0. 

We say ¢ is absolutely regular if litany®/3, = 0. For ergodic stationary processes s ¢ 

it will be shown that if ft, < 1 for some n, then 

(1.1) f l , , ~ l - 1 / p  as n---) oo 

for an integer p _-> 1 and we shall see that then ~ is in fact a "periodic" version of 

an absolutely regular process. 

For a stationary ergodic process ~: the notion "periodicity" seems sufficiently 

nice to be studied also in isolation from absolute regularity. Note that the set of 

integers k for which 

(1.2) I1P,-.,r'e)+- Pe .,r'+k,).] J, 0 as n --+ 

has the form p Z or consists of {0} only. We shall say that the process ~ has period 
p in the first case and has infinite period otherwise. If p is finite, then it will be 

seen that tail (¢+) is atomic but that its number r of atoms may be less than p. 

This phenomenon occurs for the well known skew product example (4.10). 

However  in the absolutely regular situation (1.1) these numbers coincide again 

as is known in Markov chain theory where it is connected with the notion 

"cyclic moving subclass". For stationary ergodic sequences one has 

absolutely regular ~ p --- 1 ~ tail (~+) trivial. 

For stationary Markov chains these notions coincide but by the examples at the 

end of section 4 this is not true in general. 
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In section 2 we discuss the "total  variation" limit theorems. They are based on 

the simple fact that ergodic probability measures either coincide or are mutually 

disjoint. A result in Bradley [5] suggested the use we make of this property. In 

section 3 we study periodicity and indicate questions that arise when one 

formulates the notion periodicity for transformations instead of processes. This 

may even be more natural. Section 4 discusses examples. Section 5 considers 

absolute regularity for discrete time. At the end of the section we show how limit 

theorems for non-stationary processes could be obtained from them. Finally in 

section 6 we discuss a generalization to continuous time where no periodicity 

Occurs .  

2. Statement of the limit theorems 

The result below shows for a process ~ with period p what happens if k Z pZ 

in (1.2). Related earlier results in Berbee [2], p. 127, were only satisfying for 

countably valued mixing processes. However  the "window-frame method"  used 

there has some interest from a philosophical point of view. 

THEOREM 2.1. Suppose ~ is an ergodic stationary sequence. For any integer k 

(2.1) IimIIG.,T"~,+-G ,T'", ,+II=0 or 2. 

So either the measures in (2.1) are mutually singular for all n or else they are 

asymptotically the same. 

Ornstein and Sucheston [18] used the term 0-2 theorem in a study of Markov 

operators on a ,r-finite measure space. There are clearly relations here (see also 

the application following the proof of Proposition 4.1), but in general the result 

above seems different. 

In section 3 we study also the tail of ~: and for p = 1 we may conclude from 

these results that s c is mixing, i.e. 

lim P(~ ~ A, T"~ E B)-- P(~ E A )P(~ ~ B ). 

We assume here that the sets above are in the o--field generated by all 

~,-variables. The example below shows that from a certain point of view this 

generalizes renewal theory. 

EXAMPLE 2.1. Suppose .~ is a stationary ergodic 0-1 valued process such that, 

given {s% = 1}, the set {n : ¢, = 1} has the form 

" '"  < S-I < S o = O <  SI < " "  
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and we assume that (conditionally) the increments of (S,) form an i.i.d, sequence 

with distribution F. If F{k} > 0 one checks easily that the measures in (2.1) for 

n = 0 are not mutually singular. Hence if g.c.d.{k:F{k} > 0} = 1 then 6 has 

period p = 1, and because 6 is mixing we have the discrete renewal theorem 

!im P(~o = 1[ 60 = 1 )=  P(~o = 1). 

A stationary sequence as above can be constructed as in [21], ergodicity 

following from Kolmogorov's 0-1 law for i.i.d, sequences. 

Let us now discuss absolute regularity. For ~ mixing Bradley [5] obtained the 

aperiodic version of the theorem below, strengthening a result in Volkonskii and 

Rozanov [24]. Ledrappier [15] gave a criterion for absolute regularity that is 

discussed in Note 5.1, 

Define the double tail o--field of 6 as ~ : =  N , o ' ( ~  :1i1 => n). 

TrtEOREM 2.2. Suppose ~ is stationary ergodic. If [J, < 1 for some n, then ~ has 
finite period p and (1.1) holds. Moreover 

(i) the double tail a-field of ~ is partitioned by U o~,<p { T'~ E E } into atoms that 
are TP-invariant, 

(ii) the process ~ conditioned by the event { T'6 E E} is absolutely regular. 

NOTE. Given {T'~ E E} the process ~ defined by 

n z, 

is stationary. This need not be true for ~. 

It will be clear that the result above generalizes the notion "cyclic moving 

subclass" of Markov chain theory (see e.g. [6]), but as we mentioned already, this 

generalization does not carry over to the notion periodicity. 

Bradley [4] remarks that the theorem above carries over easily to several 

stronger dependence coefficients by using his earlier results on these coefficients 

for mixing g in combination with the decomposition of our theorem (see also its 

proof). Following the notation of [12] we get that if ~ is ergodic stationary then 

unless for all n, ~b, = 1 (or e.g. l (n)  = oo) we will have 

1(!! ) 
lim d~, = l - p  m I (n )=logp  

where p is the period of 6. However  for the weaker dependence coefficient a .  it 

holds that lim,~® a,  may be any value in [0, I] by the example of theorem 6 of [3]. 

Before continuing we discuss some conventions. We study a stationary process 
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(~n) with values in a measurable space (F, 8-), so its distribution is defined on the 

product space (F, 8r) z, and we can usually assume, without losing generality, that 

(~n) is the coordinate process on this sequence space, given by 

 o(x) = x . ,  x z . 

We also write x = (x_, x÷) as above to denote the position of the first coordinate. 

For measures /~' and /1" on the same measurable space we define 

(2.4) p '  A p " : = / z '  -- (tt '  -- it")÷ = /z" -- (it" --/z ')÷ 

and if i t '  and it" are probability measures they have mass t "[I in 

common, such that 

(2.5) ½ll/ t ' - / t"l t  = 1 - q. 

If f '  or") denotes the density of/~'  (p~") with respect to e.g. p, = ½(/x' +/x") then we 

may also write 

i t '  ^ tt" = minO r', f")tt. 

3. Periodicity 

We prove Theorem 2.1 but first show the following "contraction" lemma, a 

somewhat technical but simple consequence of the ergodic theorem. 

LEMMA 3.1. Let T be a transformation on a measurable space and suppose P 

and Q are probability measures on this space, not necessarily T-invariant. Assume 

~ ,  n _-> 1, forms a decreasing sequence of tr-fields on this space, with a 

T-invariant intersection ~;~. I f  P and Q have mass in common on ~ and T is 

ergodic measure preserving for both P and Q on ~'~, then 

(3.1) lim [[ P - Q [[~. = 0. 

PROOF. Let/~:=½(P + Q). Denote by f (and g) the density of P (and Q) with 

respect to ~. By the martingale convergence theorem 

liP- o11 . = f or I E (g ] at, 

So if P and O coincide on ~ we have (3.1). Otherwise, by ergodicity, P and O 

are mutually singular on ~® C ~n and the terms in (3.1) all equal 2. [] 
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Paoov OF THEOREM 2.1. We may assume ~ is the coordinate process. Define 

on the sequence space 

P :=  P~_~÷ and O:=  P~_.(T%÷ 

and let ,,~, be generated by (~,,1i1--> n). Note that by stationarity (and 

monotonicity) the assertion of the lemma would imply the theorem. Only some 

care is needed in verifying the properties of Q in the lemma because Q may not 

be T-invariant. Define 

Note also that 

Sx: = (x_, (Tx)+) for sequences x. 

S k T x  = (( . . . .  x_ , ,Xo) ,  (Xk+,,Xk+2 . . . .  )), 

TSkx = ( ( . . . ,  x-,, xk ), (xk+~, xk+2 . . . .  )) 

coincide except possibly at the Oth coordinate. Hence for A ~ ~ in the double 

tail a-field 

(3.2) SkTx E A iff TSkx E A.  

Because P is T-invariant, (3.2) implies that on ~ also O = PS k is T-invariant. 

Moreover if A ~ ,~® is T-invariant then also by this property S-~A is T- 

invariant, so ergodicity of T under P on $:® implies ergodicity under Q. Thus the 

iemma implies the theorem. • 

THEOREM 3.2. Let ~ be stationary ergodic with finite period p. The double tail 

it-field of ~ is partitioned into at most p atoms o[ the [orm 

{T'tj E E}, 0 =  < i < r, 

where r divides p. Moreover this tail field coincides with the T p -invariant (r-field. 

It follows that the double tail o--field of ~ is trivial if p = 1. 

PROOF. We use the notation of the proof above and let E E ~r,. with positive 

probability. Because (1.2) holds with k = p  we have 

(3.3) P ( A  n E ) =  P ( A  n S-PE) 

for A s~_-measurable, because also E E ~,,, C 1"),o-(~ ,(T"sC)+). By stationarity 

A in (3.3) may also be any finite dimensional set (here we use (3.2) again). By 

stationarity we also have from (1.2) 

2 im II P,T%, ,+ -  ,.11-- 0. 
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Writing 

S_x: = ((Tx)_, x+) 

we get for A finite dimensional 

P(A n E) = P(A n SZPE). 

Combining this with (3.3) and using that S-_PS-~E = T-PE we obtain 

P(A O E)= P(A O T-PE). 

Let A =AE approximate  E. We get P ( E ) = P ( E N T - P E )  so E is a.s. T p- 

invariant. Hence  

U T-iE 
0~i<p 

is a.s. T-invariant  and by ergodicity has probabili ty 1. Therefore  P(E)>= lip and 

it follows that ~® is atomic under  P. 

Assume E E ~ as above was chosen to be an atom. Let r be the smallest i 

with E n T-~E~ (g a.s. Necessarily because T is measure  preserving and E is an 

atom, one even has E = T-'E a.s. So, also because T is measure preserving, the 

sequence E, T 1E, T-2E,.. .  repeats itself with period r and by the definition of r 

the sets T-iE and T-JE are a.s. disjoint itt i - j  does not divide r and these sets 

coincide otherwise. So r divides p because E = T-PE a.s. and the a.s.-invariant 

set U,,~<, T-iE partitions ~ .  []  

NOTE. It will be clear that also the T p- and T ' - invar iant  ~r-fields coincide. 

COROLLARY 3.3. If ~ is stationary ergodic with finite period p, then tail(E+) and 
tail(~ ) coincide a.s. with the double tail cr-.[ield, and so with the TP-invariant 

or-field. 

PROOF. By the approximation argument  in Doob  [6], pp. 458-9, each 

TP-invariant event coincides a.s. with an event in tail (~+), which of course is 

contained in the double tail cr-field. By Theorem 3.2 this a.s.-inclusion is an 

a.s.-equality. This proves the assertion for tail (~+), which clearly is part i t ioned 

into atoms by Uo~i<,T-~E,  but now with E+ E tail(~+). The same argument  

applies to tail(~_) also. []  

Vanishing of coefficients in (1.2) imposes a strong property on the process. If 

e.g. P~ ~+ = P~ .t r~+ then ~ is a Bernoulli process in case ~ is ergodic because 

P(~ @B_,(T"¢)+EB.)=P(!~_EB_)P(~+@B+) for n - -1 ,2  . . . . .  
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This follows because the left-hand side is the same for n = 1, n = 2 . . . .  and its 

limit can be identified as the right-hand side by the ergodic theorem. 

The results are discussed here from a probabilistic ("process") point of view, 

but there are important connections with an ergodic ("transformation") point of 

view. 

Let T be an ergodic, measure preserving transformation with finite entropy on 

the unit interval, provided with a probability measure. Below we assume that 

is a generating partition with finite entropy. Then 

~ , ( to ) := i  if T"toEPi, nEZ,  

determines a stationary process ~ -= ~ ' ,  say with period p = p*. One would like 

to consider pT: = inf~ p~. Possibly nicer from the point of view of ergodic theory 

is t0r, obtained as pT, but with (1.2) in the definition of p replaced by the weaker 

requirement 

lim Ed. ((sc~l so_), (sc~'l se_)) = 0, 

where s~{: = (~:i . . . . .  ¢i) and for the d-notation [22] is followed. Investigation of pT 

is far from simple. One is interested in the invariant 

= ig f  -'211 P ,  .,T-,,+ - e ,  II 

and particularly in when 6 is attained. Here ~ should read ~ .  This is related to 

isomorphism problems. See also the skew product example below. 

Assume T is a K-automorphism. Rohlin and Sina~ [20] proved that then both 

left and right tail o--fields of ~ are trivial. Ornstein and Weiss [19] showed that 

one could always refine a finite ~ to a finite ~ such that the double tail o'-fieid of 

~"~ is a.s. the entire a-field, and then certainly P~ = oo. The requirement that pr 

is finite implies that there exists a partition ~ for which ~ has trivial double tail 

tr-field. Possibly one cannot find such ~ for certain K-automorphisms T, 

4. Examples of periodicity 

The first example shows that past and future can be curiously entertwined 

while p = 1. The second example suggests that periodicity may be a nice way to 

say more about skew products. 

Throughout this section S:= (S.) will be a random walk with independent, 

identically distributed increments (~t.) determined by 

(4.1) S~,:=0; S , - S ,  ~=r/ , ,  n E Z .  
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EXAMPLE 4.1 (random walk). Suppose the increments of S have distribution 

(4.2) P(r/, E I) = 1 + Ix  I ~ dx, O< a < 1. 

Then (S.),~o and (S ,),_~o are independent and by symmetry equally distributed. 

Moreover such a random walk is transient, i.e. any bounded set contains only 

finitely many S, and (S,) is "oscillating" making occasionally large jumps 

between left and right half axis (see [8], p. 204). As in [2] or [25] one can arrange 

(S,),~z into an ascending sequence of random variables specified by 

. . . < & _ , < S ~ , = O < S , , , < . . .  

and its increments ~ : =  S~. - S~. ,, n E Z, form a stationary ergodic sequence. 

On the interval (0, 1) the measures 

(4.3) P(S~ E . ,  S, > O) and P(S2 E . ,  $2 > S1 ~> O) 

have positive mass a in common. Similarly the measures 

and 

P(S, ~ . ,  S~ > O, (r/_, (Tr/)+) E .  ) 

P(S2E ' ,  $2> S, > 0 , 0 l  , (T2~)+)~ ") 

also have mass a in common, because the vector of the form (~_, 7}+) that is 

added to both of the expressions in (4.3) is independent of the other random 

variables of these expressions. Let (S,) denote in each of these cases the random 

walk with increments 0}-)- These Cauchy random walks are transient and miss 
(0, 1) with probability ), > 0. Then it follows that the distributions of 

((S~.),~o,(S~.)._~,) and ((S~.).~,,,(S~.),_-2) 

have mass at least aT > 0 in common and so ~: has period p = 1 by Theorem 2.1. 

EXAMPLE 4.2 (skew product). Let S described by (4.1) be a random walk on 

the integers such that 

(4.4) g.c.d. 3~ = 1, where ~ : = { i  ~ Z :  P(r/o = i) > 0}. 

Assume O is a stationary ergodic sequence of real random variables such that O 

and r/ are independent and also Pp is non-atomic. The last assumption implies 

that p has no "recurring" patterns in the sense that 

(4.5) P(p = T k p ) = 0  for k ~ 0 .  
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The shift T~ associated with the process 

(4.6) ~. = (n , ,Os . )  

will be studied here. It is a factor of a skew product that is defined here as the 

shift T, but with (Ok) replaced by (Tko) .  In case S. visits all integers a.s. the 

~-sequence determines the 0-sequence a.s. and one observes that both these 

T,-shifts are isomorphic. From a general theorem in Kakutani [13] ergodicity of 

is known by (4.4). We shall also use the following inequality. 

PROPOSITION 4.1. Under the conditions above we have 

(4.7) j[ P~_,~r%~. - P~ sr"*k~,+ II <-- I] Pso+, - Pso ....  t[, 

and equality holds if the random walk  is recurrent. 

The invariant 3 of section 3 may be useful in the recurrent case. 

PROOF. Let us first note that for random variables X '  and X" on a common 

probability space with the same space of values, we have the "coupling" 

property 

(4.8) liP,,. ^ Px.ll>= P(X'-= x"). 

By Schwarz [22] equality can be attained on a suitable probability space for any 

pair of marginal distributions. There and in the later result of [2] coupling 

arguments as below can be found. 

By the Markov property, the right-hand side in (4.7) equals 

II P s .,T-s,+ - P s _ . , T - - s , + l l .  

Denote this as II Px , -  Px,.lI and let q be the mass that these probability measures 

have in common. Similarly as mentioned above we can construct a probability 

space such that equality holds in (4.8), i.e. with probability q 

(4.9) S" = S'_' and (T"S')+ = (r"+kS")+. 

We may suppose additionally that there is given a process p' - 0" independent of 

these random walks and distributed as P. By (4.9) we have, with the obvious 

notation, with probability at least q 

~c, = ~:,_, and (r"~:')+ = (T"+k~")+ 

which implies (4.7) by (4.8) for the e-processes and (2.5). 

To prove the second assertion we let II Px , -  P,,'II denote now the left-hand side 
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of (4.7). Suppose these measures have mass q' in common. We can construct a 

probability space with processes s ¢' and ~:" marginally distributed as ~, such that 

the event A for which 

~:_' = ~'_' and (T"~:')+ = (T"+k~"). 

has probability q'. To do this one first constructs the random variables above as 

before and then extends the probability space to get all of ~' and {", with the 

right marginals. On A there holds 

p 's;, = . . . . .  < O. ps;;, S o = S , ,  n =  

By recurrence of S_' and S'_' on Z we have p~, = p~ for all k E Z on A. Also 

p}:,= " ' S" > 1 ,  Ps;,'.k, S~= ~+k, n =  

and, again by recurrence, writing Z = S,"+k+t- S,'+~ 

p'k=p~+z f o r a l i k ~ Z o n A .  

By (4.6) we should have Z = 0 on A and so 

q'<= P ( Z  = 0) <- lips. .... ^ Pso.,ll 

by (4.8) for the S-variables. This proves the converse of (4.7). The study in [14] of 

(4.10) makes a deep use of a "recurrent  pat tern"  argument as above. []  

From the 0-2 law of theorem 7(d) in [17] or, in case equality holds, from 

Theorem 2.1 it follows that the right-hand side of (4.7) converges for n - -* ~  itt 

there is some n, i for which 

P(S~ = i), e(S,+k = i ) > 0  

or also iff k divides 

p ' : = g . c . d . { i - j :  i , ] E ~ } .  

So by Proposition 4.1 the period p of ~: is at most p '  and equals p '  if the random 

walk is recurrent.  

To study the double tail ~-field of ~ it is sufficient by Theorem 3.2 to 

investigate much weaker properties of the shift T~. This shift is a factor of the 

skew product referred to above. Let T~ be the shift on p-sequence space. 

Following the argument in Adler and Shields [1] it can be concluded easily from 

Kakutani [13] that the skew product is weakly mixing under P, iff the family 

{T' .x ' Tp}i.jeze is ergodic under Pp x Pp or equivalently if this holds for 
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{T~'x id, id x TOP'}, and for this it is necessary and sufficient that Tg' is ergodic 

under Pp. Hence by Theorem 3.2 the process C has trivial (double) tail it-field if 

the TP'-invariant tr-fieid of p is triVial. This improves Meilijson [16] somewhat 

and indicates the use of periodicity. 

Let us now discuss some specific examples. The literature on skew products 

considers only transformations but the choice of the process C that is meant 

below will be clear in each case. Examples with p = 1 and p deterministic were 

discussed by Shields [23], who discusses a process that is not absolutely regular 

(weak Bernoulli) and by Feldman [7]. The case where ~ and p are Bernoulli 

processes with 

(4.10) P(~/o = +- 1) = P(po = - 1) = ½ 

was studied by Kalikow [14] and has p = 2 whereas ~: has a trivial double tail 

~r-field. The transformations associated with the last two examples are not 

Bernoulli shifts. 

5.  A b s o l u t e  r e g u l a r i t y  

Let us note first that an absolutely regular process C has period 1 because 

½1lP~_(T%~+- P~_,To+,~+II_-</3. +/3.+, ~ 0 as  n ---> oo. 

PROOF OF THEOREM 2.2. Suppose ft, < 1 for some n ----> 1. Then ~ has finite 

period. To see this note that for i = n the measure /~,:= P¢-.tT'O÷ by (2.5) has 

mass a:= 1 - / 3 ,  in common with/~:= P~_ × P~+, and also/.tj for i > n has at least 

mass a in common with/~ (by stationarity of C÷). Because /z  is finite not all/.~ 

can be mutually disjoint and so C has finite period. 

We will assume that C is a coordinate process. At the end of section 3 we 

have seen that tail(C+ ) and tail(C_ ) are partitioned into r atoms of the form 

{(T~C)+ E E+} and {(TIC)_ E E_} respectively, 0_- < i < r, that coincide a.s. for each 

i and are T'-invariant.  We write these sets also as {C*-E T-iE+_}. Let 

pi(.):=e(. I T-i(E_ x E+)). 

The measures P~:=P~, are concentrated on T-iE,. Using (2.5) and the 

decomposition P = (1/r)Eo~,<,P~ we have 

where ,aT,...:=o'((T"C)_,(T"C)+). The measure P '  is concentrated on 
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T-'(E_ × E÷) and p i  x P~ on T-iE_ x T-kE+, so they can have mass in common 

only if i = j = k. Thus one observes 

(5 .1)  1 - t~. = ;  ~ ^ - P ' -  ' 
- r ~ o , .  

For some n we have /3. < 1 and some term, say the ith, in the sum above is 

positive. Because/3n is non-increasing we may assume r divides n. Let us now 

compare for this i 

(5.2) P'  and P ' _ x P L  

The process ~n := (~r+,)o_~i<, is stationary and has trivial right and left tail under 

Pi. As in Bradley [5] the measures (5.2) on I ' ] , ~  .. . .  are ergodic, measure 

preserving under T' and by Lemma 3.1 

(5.3) l i ra l i P '  - P ' -  × PLII~ . . . .  = 0. 

Because T is measure preserving under P this holds for any i and we may 

replace ~_~,. by ~o,2.. From (5.1) it follows now that 

1 - ~ . 1  '1  - a s  n - - - ,  ~ .  
r 

We saw that ~ is absolutely regular under P~ and so its period is 1. Thus the 

period p of ~ divides r. Because r < p we have r = p. [] 

NOTE 5.1. From the argument leading to (5.1) and (5.3) it follows that under 

(1.1) on ~ : =  N,(r((T-"~)_,(T"~)+) there holds 

(5.4) P~_,e+ = [P~_ x P¢÷ 

with f = 0 outside I,.Jo~<p T-~E_ x T-~E÷ and f = p on this set. So if the measures 

in (5.4) are equivalent on sequence space, provided with any (r-field containing 

~ ,  then clearly p = 1 and the process ~ is absolutely regular. Ledrappier [15] 

obtained a similar result for finite valued processes and gives several examples. 

NOTE 5.2. If one is only interested in Theorem 2.2, then one could also show 

that tail (st÷) has an atom using [5], lemma 1. Then some of the considerations 

using aperiodicity would become superfluous. 

Results as above can also be used to study processes that are not stationary. 

Suppose ~ = (~.) ,~  is any process such that 

(5.5) P, < P, 
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where ~ = (~n),--1 is stationary and has trivial tail. Then 

(5.6) lirn II P,T'i,+ - P, II = o. 

This follows by using the martingale argument as in Lemma 3.1. The reader will 

note that (5.5) can be relaxed to the requirement that the mass of the Pc-singular 

component of Ptr%~+ vanishes asymptotically. 

6. Absence of periodicity for continuous time 

We discuss a way in which Theorem 2.2 can be extended to continuous time 

such that no periodicity occurs. We require a light measurability condition. 

The process (~,) will have its sample paths in the space F ~ provided with a shift 

invariant o'-field 5~. Here F is any set. If x ~ F ~ is a sample path and I an interval 

denote by x~ the restriction of x to /. Let @~ be the o--field consisting of all 

D E ~ such that if two sample paths x and y coincide on I then y E D if x E D. 

We assume D is generated by all ~ for finite intervals I, and also that for D E 

f(t, x) :=  lo (T,x) 

is jointly measurable in t and x. 

Assume ~:= (~,) is stationary, i.e. its distribution on (F ~, ~ )  is shift invariant. It 

has the continuity property 

(6.t) lim P({~ E D} A {T,~: E D}) =0 .  
t ~ O  

To see this note that by stationarity the probability above coincides for each s 

with 

S lf(s,x) f(s t, P(~ dx). + x ) l  E I 

Average over s E [0, hi and apply Fubini. The assertion (6.1) follows by using 

that because ] ' ( . ,  x) is measurable for all x 

-~ If(s,x)-f(s +t,x)lds~O a s  t---~0. 
I 

Denote ~_ := ~_~.~,j and ~+ := ~tt,.®~ and write 

/3t:=/~(~:_, (T,~)+), t_-0. 

Under the measurability conditions above we have 

TnEOREM 6.1. If ~ is stationary ergodic then lim,_~/3, = 0 or 1. 



VoI. 55, 1 9 8 6  PERIODICITY AND ABSOLUTE REGULARITY 303 

PROOF. Let ~:~ for any h > 0  be the discrete time process 

~¢~- : = ~:(.,,(.+,~l, n ~ Z. 

We may define tail(~:+):= tail(seh+) because tail(~h+) is the same for all h > 0 .  
Assume /3, < 1 for some t > 0. Because [3, is non-increasing we may assume h 
divides t. By Theorem 2.2, ~¢h has finite period and for any atom {~ E E} in 

tail(~+) either the atom { T"~ E E} coincides or is disjoint with {~ E E} a.s. So the 

function 

f(h)= P({~ E E}A{T"~ E E}) 

has values 0 or 2P(~ ¢ E E).  By (6.1) this function is continuous and because 

f(0) = 0 it vanishes. So {~ @ E} is a.s. invariant and by ergodicity has probability 
1. So ~h is absolutely regular with period 1 and hence/3, ~ 0. [] 
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